Real-Time Use of Artificial Intelligence During Colonoscopy for Detection and Characterization of Colorectal Polyps

Authors

DOI:

https://doi.org/10.22516/25007440.1425

Keywords:

Artificial intelligence, colonoscopy, adenoma, Colombia, diagnosis

Abstract

Introduction: Colorectal cancer represents a significant public health concern in Colombia and worldwide. The detection and resection of adenomatous polyps via colonoscopy have contributed to reducing the incidence and mortality associated with colorectal cancer. Recently, numerous studies have been published regarding the use of artificial intelligence (AI) for detecting adenomatous polyps during colonoscopy; however, data on this topic in South America remain scarce.

Materials and Methods: We conducted a prospective, descriptive study including patients over 45 years of age who underwent colonoscopy for colorectal cancer screening assisted by a real-time polyp detection system (Computer-Aided Detection, CAD EYE, Fujifilm, Tokyo, Japan) at two tertiary referral centers between May 2023 and June 2024. Demographic and procedural variables were recorded. The diagnostic performance of this tool was assessed through analysis of sensitivity, specificity, likelihood ratios, adenoma detection rate (ADR), polyp detection rate (PDR), and receiver operating characteristic (ROC) curves for lesion characterization (neoplastic and non-neoplastic).

Results: A total of 86 patients were included in the final analysis. Of these, 80.2% (n = 69) were female, with a mean age of 63 years (± 9.83). The PDR with CAD EYE was 58.1%, whereas the ADR was 38.4% The concordance rate between AI and histopathology for lesions classified as neoplastic or hyperplastic was 73.13%. AI-based categorization of colorectal lesions as neoplastic demonstrated a sensitivity of 78.8% and specificity of 83.1%, with an area under the curve (AUC) of 0.73 (95% confidence interval [CI]: 0.686–0.882). Compared with the ADR previously reported by two of the study authors, the use of AI increased adenoma detection by more than 10%.

Conclusion: This is the first study in Colombia evaluating the use of real-time AI software during colonoscopy, demonstrating a significant improvement in both ADR and PDR. Current evidence, alongside the findings of this study, indicates a promising discriminative ability for AI-assisted characterization of colonic polyps.

Downloads

Download data is not yet available.

Author Biographies

Diego Mauricio Aponte-Martín, Fundación Universitaria Sanitas

Especialista en Gastroenterología y Endoscopia digestiva, Coordinador del programa de Especialización en Gastroenterología, Fundación Universitaria Sanitas, Keralty. Bogotá, Colombia.

Juan Sebastián Salas-Robayo, Fundación Universitaria Sanitas

Residente de Gastroenterología, Fundación Universitaria Sanitas. Bogotá, Colombia.

Laura Gaitan, Fundación Universitaria Sanitas

Residente en gastroenterología, Fundación univesitaria Sanitas. Bogotá, Colombia.

Sandra Judith Huertas-Pacheco, Clínica Reina Sofía

Especialista en Patología Digestiva, Laboratorio Clínico y de Patología, Clínica Reina Sofía. Bogotá, Colombia.

Andrea Carolina Cordoba, Clínica Universitaria Colombia

Especialista en Gastroenterología y Endoscopia Digestiva. Gastroenteróloga, Clínica Universitaria Colombia. Bogotá, Colombia.

Hernan Vergara, Fundación Universitaria Sanitas

Especialista en Epidemiología, Fundación Universitaria Sanitas. Bogotá, Colombia.

María Valentina Aponte-Aparicio, Pontificia Universidad Javeriana

Médica general. Pasante y médica investigadora en Funinderma. Bogotá, Colombia.

Luis Carlos Sabbagh , Clínica Colsanitas; Grupo Keralty

Especialista en Gastroenterología y Endoscopia digestiva, Jefe del Departamento de Gastroenterología Clínica Colsanitas, Grupo Keralty. Bogotá, Colombia.

References

Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021;14(10):101174. https://doi.org/10.1016/j.tranon.2021.101174

Kamitani Y, Nonaka K, Isomoto H. Current Status and Future Perspectives of Artificial Intelligence in Colonoscopy. J Clin Med. 2022;11(10):2923. https://doi.org/10.3390/jcm11102923

Keswani RN, Crockett SD, Calderwood AH. AGA Clinical Practice Update on Strategies to Improve Quality of Screening and Surveillance Colonoscopy: Expert Review. Gastroenterology. 2021;161(2):701-711. https://doi.org/10.1053/j.gastro.2021.05.041

Ahn SB, Han DS, Bae JH, Byun TJ, Kim JP, Eun CS. The Miss Rate for Colorectal Adenoma Determined by Quality-Adjusted, Back-to-Back Colonoscopies. Gut Liver. 2012;6(1):64-70. https://doi.org/10.5009/gnl.2012.6.1.64

Gómez-Zuleta MA, Cano-Rosales DF, Bravo Higuera DF, Ruano-Balseca JA, Romero-Castro E. Detección automática de pólipos colorrectales con técnicas de inteligencia artificial. Rev Colomb Gastroenterol. 2021;36(1):7-17. https://doi.org/10.22516/25007440.471

Xu L, He X, Zhou J, Zhang J, Mao X, Ye G, et al. Artificial intelligence-assisted colonoscopy: A prospective, multicenter, randomized controlled trial of polyp detection. Cancer Med. 2021;10(20):7184-7193. https://doi.org/10.1002/cam4.4261

Hassan C, Spadaccini M, Iannone A, Maselli R, Jovani M, Chandrasekar VT, et al. Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis. Gastrointest Endosc. 2021;93(1):77-85.e6. https://doi.org/10.1016/j.gie.2020.06.059

Rex DK, Anderson JC, Butterly LF, Day LW, Dominitz JA, Kaltenbach T, et al. Quality indicators for colonoscopy. Gastrointest Endosc. 2024;100(3):352-381. https://doi.org/10.1016/j.gie.2024.04.2905

Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, Doubeni CA, et al. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med. 2014;370(14):1298-306. https://doi.org/10.1056/NEJMoa1309086

Rex DK, Schoenfeld PS, Cohen J, Pike IM, Adler DG, Fennerty MB, et al. Quality indicators for colonoscopy. Gastrointest Endosc. 2015:81(1):31-53. https://doi.org/10.1016/j.gie.2014.07.058

Repici A, Spadaccini M, Antonelli G, Correale L, Maselli R, Galtieri PA, et al. Artificial intelligence and colonoscopy experience: lessons from two randomised trials. Gut. 2022;71(4):757-765. https://doi.org/10.1136/gutjnl-2021-324471

Repici A, Badalamenti M, Maselli R, Correale L, Radaelli F, Rondonotti E, et al. Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial. Gastroenterology. 2020;159(2):512-520.e7. https://doi.org/10.1053/j.gastro.2020.04.062

Huang D, Shen J, Hong J, Zhang Y, Dai S, Du N, et al. Effect of artificial intelligence-aided colonoscopy for adenoma and polyp detection: a meta-analysis of randomized clinical trials. Int J Colorectal Dis. 2022;37(3):495-506. https://doi.org/10.1007/s00384-021-04062-x

Schöler J, Alavanja M, de Lange T, Yamamoto S, Hedenström P, Varkey J. Impact of AI-aided colonoscopy in clinical practice: a prospective randomised controlled trial. BMJ Open Gastroenterol. 2024;11(1):e001247. https://doi.org/10.1136/bmjgast-2023-001247

Mohan BP, Facciorusso A, Khan SR, Chandan S, Kassab LL, Gkolfakis P, et al. Real-time computer aided colonoscopy versus standard colonoscopy for improving adenoma detection rate: A meta-analysis of randomized-controlled trials. EClinicalMedicine. 2020;29-30:100622. https://doi.org/10.1016/j.eclinm.2020.100622

Aponte Martín DM, Corso Bernal CL, Aponte Aparicio MV, Sabbagh Sanvicente LC. Mejoría de la preparación de colonoscopia usando tecnologías de la información y comunicación (TIC), ensayo clínico aleatorizado. Rev Colomb Gastroenterol. 2024:39(1);51-8. https://doi.org/10.22516/25007440.1092

Figura 1. Curva ROC y datos AUC. Imagen propiedad de los autores

Published

2025-09-30

How to Cite

Aponte Martín, D. M., Salas Robayo, J. S., Gaitan, L., Huertas Pacheco, S. J., Cordoba, A. C., Vergara, H., … Sabbagh , L. C. (2025). Real-Time Use of Artificial Intelligence During Colonoscopy for Detection and Characterization of Colorectal Polyps. Revista Colombiana De Gastroenterología, 40(3), 279–283. https://doi.org/10.22516/25007440.1425

Issue

Section

Originals articles