Automatic Auditing System for Endoscopic Exploration of the Stomach with Artificial Intelligence-Gastro UNAL: Gastroendoscopy UNit for Automatic Labeling

Authors

DOI:

https://doi.org/10.22516/25007440.1163

Keywords:

Esophagogastroduodenoscopy, artificial intelligence, diagnostic blind spots, neural network

Abstract

Introduction: Upper endoscopy is the standard method for diagnosing early-stage gastric cancer. However, according to estimates, up to 20% of tumors are not detected, and their accuracy may be affected by the variability in their performance. In Colombia, most diagnoses take place in advanced stages, which aggravates the problem. Protocols have been proposed to ensure the complete observation of areas prone to premalignant lesions to address variability.

Objective: To build and validate an automatic audit system for endoscopies using artificial intelligence techniques.

Methodology: In this study, 96 patients from a teaching hospital underwent video-documented endoscopies, spanning 22 stations rearranged to minimize overlaps and improve the identification of 13 key gastric regions. An advanced convolutional network was used to process the images, extracting visual characteristics, which facilitated the training of artificial intelligence in the classification of these areas.

Results: the model, called  Gastro UNAL, was trained and validated with images of 67 patients (70% of cases) and tested with 29 different patients (30% of cases), which reached an average sensitivity of 85,5% and a specificity of 98,8% in detecting the 13 gastric regions.

Conclusions: The effectiveness of the model suggests its potential to ensure the quality and accuracy of endoscopies. This approach could confirm the regions evaluated, alerting less experienced or trained endoscopists about blind spots in the examinations, thus, increasing the quality of these procedures.

Downloads

Download data is not yet available.

Author Biographies

Martín Alonso Gómez Zuleta, Universidad Nacional de Colombia

Médico Internista, Gastroenterólogo.  Hospital Universitario Nacional de Colombia. Profesor asociado de Medicina Interna, Director unidad de Gastroenterología. Universidad Nacional de Colombia. Bogotá, Colombia.

Diego Fernando Bravo Higuera, Universidad Nacional de Colombia

Estudiante Doctorado en Ingeniería – Eléctrica. Grupo de Investigación Computer Imaging and Medical Applications Laboratory (CIM@LAB), Universidad Nacional de Colombia.  Bogotá, Colombia

Josué Andre Ruano Balseca, Universidad Nacional de Colombia

Estudiante Doctorado en Ingeniería – Sistemas y Computación. Grupo de Investigación Computer Imaging and Medical Applications Laboratory (CIM@LAB), Universidad Nacional de Colombia. Bogotá, Colombia.

María Jaramillo González, Universidad Nacional de Colombia

Estudiante Doctorado en ingeniería eléctrica. Grupo de Investigación Computer Imaging and Medical Applications Laboratory (CIM@LAB), Universidad Nacional de Colombia. Bogotá, Colombia.

Fabio Augusto González Osorio, Universidad Nacional de Colombia

Doctor en Ciencias de la Computación, Director Grupo de Investigación Machine Learning, Perception and Discovery (MINDLAB), Profesor Titular Departamento de Ingeniería de Sistemas e Industrial Universidad Nacional de Colombia. Bogotá, Colombia.

Edgar Eduardo Romero Castro, Universidad Nacional de Colombia

Doctor en ciencias biomédicas, director maestría Ingeniería Biomédica, Director Grupo de Investigación Computer Imaging and Medical Applications Laboratory (CIM@LAB) Profesor, Universidad Nacional de Colombia Facultad de Medicina. Bogotá, Colombia.

References

Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, et al. Global Cancer Observatory: Cancer Today [Internet]. Lyon, France: International Agency for Research on Cancer; 2024 [consultado el 1 de abril de 2024]. Disponible en: https://gco.iarc.who.int/today, accessed [01 04 2024].

Oliveros-Wilches R, Grillo-Ardila CF, Vallejo-Ortega M, Gil-Parada F, Cardona-Tobón M, Páramo-Hernández D, et al. Guía de práctica clínica para la prevención primaria y secundaria y diagnóstico temprano de cáncer gástrico. Rev Colomb Cancerol. 2022;26(1):39-96. https://doi.org/10.35509/01239015.754

Oliveros R, Navarrera LF. Diagnóstico, estadificación y tratamiento del cáncer gástrico en Colombia desde 2004 a 2008 (REGATE -Colombia). Rev Colomb Gastroenterol. 2012;27(4):269-74.

Pasechnikov V, Chukov S, Fedorov E, Kikuste I, Leja M. Gastric cancer: Prevention, screening and early diagnosis. World J Gastroenterol WJG. 2014;20(38):13842-62. https://doi.org/10.3748/wjg.v20.i38.13842

Kaise M. Advanced endoscopic imaging for early gastric cancer. Best Pract Res Clin Gastroenterol. 2015;29(4):575-87. https://doi.org/10.1016/j.bpg.2015.05.010

Pimenta-Melo AR, Monteiro-Soares M, Libânio D, Dinis-Ribeiro M. Missing rate for gastric cancer during upper gastrointestinal endoscopy: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2016;28(9):1041-9. https://doi.org/10.1097/MEG.0000000000000657

Lee SH, Park YK, Cho SM, Kang JK, Lee DJ. Technical skills and training of upper gastrointestinal endoscopy for new beginners. World J Gastroenterol WJG. 2015;21(3):759-85. https://doi.org/10.3748/wjg.v21.i3.759

Yao K. The endoscopic diagnosis of early gastric cancer. Ann Gastroenterol Q Publ Hell Soc Gastroenterol. 2013;26(1):11.

Yao K, Uedo N, Muto M, Ishikawa H. Development of an e-learning system for teaching endoscopists how to diagnose early gastric cancer: basic principles for improving early detection. Gastric Cancer. 2017;20(Suppl 1):28-38. https://doi.org/10.1007/s10120-016-0680-7

Kim JS, Kim BW. Training in Endoscopy: Esophagogastroduodenoscopy. Clin Endosc. 2017;50(4):318-21. https://doi.org/10.5946/ce.2017.096

Eisen GM, Baron TH, Dominitz JA, Faigel DO, Goldstein JL, Johanson JF, et al. Methods of granting hospital privileges to perform gastrointestinal endoscopy. Gastrointest Endosc. 2002;55(7):780-3. https://doi.org/10.1016/S0016-5107(02)70403-3

Farthing MJ, Walt RP, Allan RN, Swan CH, Gilmore IT, Mallinson CN, et al. A national training programme for gastroenterology and hepatology. Gut. 1996;38(3):459-70. https://doi.org/10.1136/gut.38.3.459

Beattie AD, Greff M, Lamy V, Mallinson CN. The European Diploma of Gastroenterology: progress towards harmonization of standards. Eur J Gastroenterol Hepatol. 1996;8(4):403-6. https://doi.org/10.1097/00042737-199604000-00021

Beg S, Ragunath K, Wyman A, Banks M, Trudgill N, Pritchard DM, et al. Quality standards in upper gastrointestinal endoscopy: a position statement of the British Society of Gastroenterology (BSG) and Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland (AUGIS). Gut. 2017;66(11):1886-99. https://doi.org/10.1136/gutjnl-2017-314109

Bisschops R, Areia M, Coron E, Dobru D, Kaskas B, Kuvaev R, et al. Performance measures for upper gastrointestinal endoscopy: A European Society of Gastrointestinal Endoscopy quality improvement initiative. United Eur Gastroenterol J. 2016;4(5):629-56. https://doi.org/10.1177/2050640616664843

Yao K, Uedo N, Kamada T, Hirasawa T, Nagahama T, Yoshinaga S, et al. Guidelines for endoscopic diagnosis of early gastric cancer. Dig Endosc Off J Jpn Gastroenterol Endosc Soc. 2020;32(5):663-98. https://doi.org/10.1111/den.13684

Emura F, Sharma P, Arantes V, Cerisoli C, Parra-Blanco A, Sumiyama K, et al. Principles and practice to facilitate complete photodocumentation of the upper gastrointestinal tract: World Endoscopy Organization position statement. Dig Endosc. 2020;32(2):168-79. https://doi.org/10.1111/den.13530

Kim GH, Bang SJ, Ende AR, Hwang JH. Is screening and surveillance for early detection of gastric cancer needed in Korean Americans? Korean J Intern Med. 2015;30(6):747-58. https://doi.org/10.3904/kjim.2015.30.6.747

Asaka M, Mabe K. Strategies for eliminating death from gastric cancer in Japan. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90(7):251-8. https://doi.org/10.2183/pjab.90.251

Hamashima C, Systematic Review Group and Guideline Development Group for Gastric Cancer Screening Guidelines. Update version of the Japanese Guidelines for Gastric Cancer Screening. Jpn J Clin Oncol. 2018;48(7):673-83. https://doi.org/10.1093/jjco/hyy077

Yashima K, Shabana M, Kurumi H, Kawaguchi K, Isomoto H. Gastric Cancer Screening in Japan: A Narrative Review. J Clin Med. 2022;11(15):4337. https://doi.org/10.3390/jcm11154337

Goss PE, Lee BL, Badovinac-Crnjevic T, Strasser-Weippl K, Chavarri-Guerra Y, St Louis J, et al. Planning cancer control in Latin America and the Caribbean. Lancet Oncol. 2013;14(5):391-436. https://doi.org/10.1016/S1470-2045(13)70048-2

Bravo LE, Hernández Vargas JA, Collazos P, García LS, Valbuena AM, Acuña L. Survival in stomach cancer: analysis of a national cancer information system and a population-based cancer registry in Colombia. Colomb Médica CM. 2023;53(4):e2025126. https://doi.org/10.25100/cm.v53i4.5126

Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S. A ConvNet for the 2020s [Internet]. arXiv; 2022 [consultado el 15 de septiembre de 2023]. Disponible en: http://arxiv.org/abs/2201.03545. https://doi.org/10.1109/CVPR52688.2022.01167

Bravo D, Ruano J, Jaramillo M, Gallego D, Gómez M, González FA, et al. Automatic Classification of Esophagogastroduodenoscopy Sub-Anatomical Regions. En: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI). 2023. p. 1-5. https://doi.org/10.1109/ISBI53787.2023.10230483

Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. En: 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009. p. 248-55. https://doi.org/10.1109/CVPR.2009.5206848

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet Large Scale Visual Recognition Challenge [Internet]. arXiv; 2015 [consultado el 15 de septiembre de 2023]. Disponible en: http://arxiv.org/abs/1409.0575

Serre T, Kreiman G, Kouh M, Cadieu C, Knoblich U, Poggio T. A quantitative theory of immediate visual recognition. Prog Brain Res. 2007;165:33-56. https://doi.org/10.1016/S0079-6123(06)65004-8

Lee H, Ekanadham C, Ng A. Sparse deep belief net model for visual area V2 [Internet]. Advances in Neural Information Processing Systems; 2007 [consultado el 24 de septiembre de 2023]. Disponible en: https://papers.nips.cc/paper_files/paper/2007/file/4daa3db355ef2b0e64b472968cb70f0d-Paper.pdf

Glorot X, Bordes A, Bengio Y. Deep Sparse Rectifier Neural Networks. International Conference on Artificial Intelligence and Statistics; 2011 [consultado el 24 de septiembre de 2023]. Disponible en: https://www.semanticscholar.org/paper/Deep-Sparse-Rectifier-Neural-Networks-Glorot-Bordes/67107f78a84bdb2411053cb54e94fa226eea6d8e

Hamashima C, Ogoshi K, Narisawa R, Kishi T, Kato T, Fujita K, et al. Impact of endoscopic screening on mortality reduction from gastric cancer. World J Gastroenterol WJG. 2015;21(8):2460-6. https://doi.org/10.3748/wjg.v21.i8.2460

Kim SY, Park JM. Quality indicators in esophagogastroduodenoscopy. Clin Endosc. 2022;55(3):319-31. https://doi.org/10.5946/ce.2022.094

Chiu PWY, Uedo N, Singh R, Gotoda T, Ng EKW, Yao K, et al. An Asian consensus on standards of diagnostic upper endoscopy for neoplasia. Gut. 2019;68(2):186-97. https://doi.org/10.1136/gutjnl-2018-31711134.

Renna F, Martins M, Neto A, Cunha A, Libânio D, Dinis-Ribeiro M, et al. Artificial Intelligence for Upper Gastrointestinal Endoscopy: A Roadmap from Technology Development to Clinical Practice. Diagn Basel Switz. 2022;12(5):1278. https://doi.org/10.3390/diagnostics12051278

Takiyama H, Ozawa T, Ishihara S, Fujishiro M, Shichijo S, Nomura S, et al. Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks. Sci Rep. 2018;8(1):7497. https://doi.org/10.1038/s41598-018-25842-6

Wu L, Zhou W, Wan X, Zhang J, Shen L, Hu S, et al. A deep neural network improves endoscopic detection of early gastric cancer without blind spots. Endoscopy. 2019;51(6):522-31. https://doi.org/10.1055/a-0855-3532

Chang YY, Li PC, Chang RF, Yao CD, Chen YY, Chang WY, et al. Deep learning-based endoscopic anatomy classification: an accelerated approach for data preparation and model validation. Surg Endosc. 2022;36(6):3811-21. https://doi.org/10.1007/s00464-021-08698-2

Figura 1. Flujo del método propuesto para identificar automáticamente 13 regiones gástricas.

Published

2024-06-27

How to Cite

Gómez Zuleta, M. A., Bravo Higuera, D. F., Ruano Balseca, J. A., Jaramillo González, M., González Osorio, F. A., & Romero Castro, E. E. (2024). Automatic Auditing System for Endoscopic Exploration of the Stomach with Artificial Intelligence-Gastro UNAL: Gastroendoscopy UNit for Automatic Labeling. Revista Colombiana De Gastroenterología, 39(2), 133–145. https://doi.org/10.22516/25007440.1163

Issue

Section

Originals articles